Friday, July 12, 2019

Winter monsoons became stronger during geomagnetic reversal: Revealing the impact of cosmic rays on the Earth's climate

When galactic cosmic rays increased during the Earth's last geomagnetic reversal transition 780,000 years ago, the umbrella effect of low-cloud cover led to high atmospheric pressure in Siberia, causing the East Asian winter monsoon to become stronger.

During the last geomagnetic reversal transition, when the amount of galactic cosmic rays increased dramatically, there was also a large increase in cloud cover, so it should be possible to detect the impact of cosmic rays on climate at a higher sensitivity.

Focusing on this phenomenon, the research team proposed that winter monsoons became stronger under the umbrella effect of increased cloud cover during the geomagnetic reversal.

These strong winter monsoons coincide with the period during the geomagnetic reversal when the Earth's magnetic strength fell to less than ¼, and galactic cosmic rays increased by over 50%. This suggests that the increase in cosmic rays was accompanied by an increase in low-cloud cover, the umbrella effect of the clouds cooled the continent, and Siberian high atmospheric pressure became stronger.

Added to other phenomena during the geomagnetic reversal - evidence of an annual average temperature drop of 2-3 degrees Celsius, and an increase in annual temperature ranges from the sediment in Osaka Bay - this new discovery about winter monsoons provides further proof that the climate changes are caused by the cloud umbrella effect.

"The Intergovernmental Panel on Climate Change has discussed the impact of cloud cover on climate in their evaluations, but this phenomenon has never been considered in climate predictions due to the insufficient physical understanding of it," comments Professor Hyodo.

"This study provides an opportunity to rethink the impact of clouds on climate. When galactic cosmic rays increase, so do low clouds, and when cosmic rays decrease clouds do as well, so climate warming may be caused by an opposite-umbrella effect. The umbrella effect caused by galactic cosmic rays is important when thinking about current global warming as well as the warm period of the medieval era."

https://www.sciencedaily.com/releases/2019/07/190703121407.htm

No comments: